This study introduces a novel framework to apply the artifact subspace reconstruction (ASR) algorithm on single-channel electroencephalogram (EEG) data. ASR is known for its ability to remove artifacts like eye-blinks and movement but traditionally relies on multiple channels. Embedded ASR (E-ASR) addresses this by incorporating a dynamical embedding approach. In this method, an embedded matrix is created from single-channel EEG data using delay vectors, followed by ASR application and reconstruction of the cleaned signal. Data from four subjects with eyes open were collected using Fp1 and Fp2 electrodes via the CameraEEG android app. The E-ASR algorithm was evaluated using metrics like relative root mean square error (RRMSE), correlation coefficient (CC), and average power ratio. The number of eye-blinks with and without the E-ASR approach was also estimated. E-ASR achieved an RRMSE of 43.87% and had a CC of 0.91 on semi-simulated data and effectively reduced artifacts in real EEG data, with eye-blink counts validated against ground truth video data. This framework shows potential for smartphone-based EEG applications in natural environments with minimal electrodes.
Keywords: artifact removal; artifact subspace reconstruction; electroencephalography; eye blink; signal processing; single channel; smartphone.