Merkel cell polyomavirus (MCPyV) is the foremost causative factor of Merkel cell carcinoma (MCC), a rare yet highly aggressive skin cancer. Although the evaluation of circulating IgG antibodies against Merkel cell polyomavirus (MCPyV) LT/sT oncoproteins is clinically useful for MCC diagnosis/prognosis, a limited number of assays for identifying such antibodies have been developed. Herein, a novel indirect immunoassay with synthetic epitopes/mimotopes of MCPyV oncoproteins was computationally designed and experimentally validated on control sera and sera from healthy individuals and MCC patients. Upon computational design of five synthetic peptides, the performance of the immunoassay in detecting anti-oncoprotein IgGs in MCPyV-positive and -negative control sera was evaluated. The immunoassay was afterwards extended on sera from healthy individuals, and, for longitudinal analysis, MCC patients. Performance properties such as sensitivity and specificity and positive/negative predictive values were adequate. Receiver-operating characteristic (ROC) curves indicated that the areas under the curves (AUCs) were within the low/moderately accurate ranges. Immunoassay was repeatable, reproducible and accurate. As expected, the serum anti-oncoprotein IgG prevalence in healthy individuals was low (2%-5%). Anti-oncoprotein IgGs slightly increased when MCC patients experienced partial tumour remission and/or stable disease, compared to baseline. Our data indicate that the newly developed immunoassay is reliable for detecting circulating anti-oncoprotein IgGs both in healthy individuals and MCC patients.
© 2024 The Author(s). Microbial Biotechnology published by John Wiley & Sons Ltd.