Comparing coupled cluster and composite quantum chemical methods for computing activation energies and reaction enthalpies of radical propagation reactions

Phys Chem Chem Phys. 2024 Nov 7;26(43):27536-27543. doi: 10.1039/d4cp03676j.

Abstract

Accurate determination of activation energies and reaction enthalpies is essential for understanding the propagation step in free radical polymerization, as it significantly affects polymer chain length and structure. In this study, we compare DLPNO-CCSD(T) to canonical CCSD(T) for 17 radical addition activation energies and 18 reaction enthalpies from Radom and Fischer's test set. Additionally, we compare the computationally efficient composite methods G3(MP2)-RAD and CBS-RAD against CCSD(T)/aug-cc-pVTZ and DLPNO-CCSD(T)/CBS methods. Compared to the CCSD(T)/aug-cc-pVTZ reference, our results indicate that DLPNO-CCSD(T)/CBS with unrestricted Hartree-Fock (UHF) or UB3LYP reference orbitals and NormalPNO parameters consistently achieves chemical accuracy, with mean absolute deviations of 3.5 kJ mol-1 for activation energies and 1.5 kJ mol-1 for reaction enthalpies. Comparing the two composite methods shows that CBS-RAD agrees most closely with coupled cluster reaction enthalpies, while G3(MP2)-RAD tracks the activation energies most closely.