Despite the litany of pathogenic variants linked to neurodevelopmental disorders (NDD) including autism (ASD) and intellectual disability 1,2 , our understanding of the underlying mechanisms caused by risk genes remain unclear. Here, we leveraged a human pluripotent stem cell model to uncover the neurodevelopmental consequences of mutations in ZMYND11 , a newly implicated risk gene 3,4 . ZMYND11, known for its tumor suppressor function, encodes a histone-reader that recognizes sites of transcriptional elongation and acts as a co-repressor 5,6 . Our findings reveal that ZMYND11-deficient cortical neural stem cells showed upregulation of latent developmental pathways, impairing progenitor and neuron production. In addition to its role on histones, ZMYND11 controls a brain-specific isoform switch involving the splicing regulator RBFOX2. Extending our findings to other chromatin-related ASD risk factors revealed similar developmental pathway activation and splicing dysregulation, partially rescuable through ZMYND11's regulatory functions.