The vertebrate gut microbiota is a critical determinant of organismal function, yet whether and how gut microbial communities affect host fitness under natural conditions remains largely unclear. We characterised associations between a fitness proxy-individual growth rate-and bacterial gut microbiota diversity and composition in threespine stickleback fish introduced to large semi-natural ponds. We detected a 63% higher richness of bacterial taxa (α-diversity) in the guts of high-fitness fish compared to low-fitness fish, which might be driven by stronger bacterial dispersal among high-fitness fish according to the fit of a neutral community model. Further, microbial communities of high-fitness fish were more similar to one another (i.e., exhibited lower β-diversity) than those of low-fitness fish. The lower β-diversity found to be associated with higher host fitness is consistent with the Anna Karenina principle-that there are fewer ways to have a functional microbiota than a dysfunctional microbiota. Our study links differences in α- and β-diversity to a fitness-related trait in a vertebrate species reared under naturalistic conditions and our findings provide a basis for functional tests of the fitness consequences of host-microbiota interactions.
Keywords: Gasterosteus aculeatus; 16S rRNA sequencing; Anna Karenina principle; fitness; gut microbiome; host–microbe interaction.
© 2024 The Author(s). Molecular Ecology published by John Wiley & Sons Ltd.