Background: The transcriptomic profile of cellular senescence is strongly associated with distinct cell types, the specific stressors triggering senescence, and temporal progression through senescence stages. This implies the potential necessity of conducting separate investigations for each cell type and a stressor inducing senescence. To elucidate the molecular mechanism that drives endoplasmic reticulum (ER) stress-induced cellular senescence in MCF-7 breast cancer cells, with a particular emphasis on the ATF6α branch of the unfolded protein response. We conducted transcriptomic analysis on MCF-7 cells by ectopic expression of ATF6α.
Methods: Transcriptomic sequencing was conducted on MCF-7 cells at 6 and 9 hours post senescence induction through ATF6α ectopic expression. Comprehensive analyses encompassing enriched functional annotation, canonical pathway analysis, gene network analysis, upstream regulator analysis and gene set enrichment analysis were performed on Differentially Expressed Genes (DEGs) at 6 and 9 hours as well as time-related DEGs. Regulators and their targets identified from the upstream regulator analysis were validated through RNA interference, and their impact on cellular senescence was assessed by senescence-associated β-galactosidase staining.
Results: ATF6α ectopic expression resulted in the identification of 12 and 79 DEGs at 6 and 9 hours, respectively, employing criteria of a false discovery rate < 0.05 and a lower fold change (FC) cutoff |log2FC| > 1. Various analyses highlighted the involvement of the UPR and/or ER Stress Pathway. Upstream regulator analysis of 9 hour-DEGs identified six regulators and eleven target genes associated with processes related to cytostasis and 'cell viability and cell death of connective tissue cells.' Validation confirmed the significance of MAP2K1/2, GPAT4, and PDGF-BB among the regulators and DDIT3, PPP1R15A, and IL6 among the targets.
Conclusion: Transcriptomic analyses and validation reveal the importance of the MAP2K1/2/GPAT4-DDIT3 pathway in driving cellular senescence following ATF6α ectopic expression in MCF-7 cells. This study contributes to our understanding of the initial molecular events underlying ER stress-induced cellular senescence in breast cancer cells, providing a foundation for exploring cell type- and stressor-specific responses in cellular senescence induction.
Copyright: © 2024 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.