Chemical upcycling of plastic wastes into valuable chemicals is a promising strategy for resolving plastic pollution, but economically viable methods currently are still lacking. Here, we report one-pot hydrogenolysis of PET plastic into p-xylene with an excellent yield (99.8 %) over a robust non-precious Cu-based catalyst, CuZn/Al2O3, in the absence of alcohol solvents. The presence of Zn species promotes the dispersion of Cu0 and increases the ratio of Cu+/Cu0, whereas the synergistic effect of Cu0 and Cu+ leads to a superior performance in the conversion of PET. The combination of GC-MS, 13C CP MAS NMR, 2D 1H-13C CP HETCOR NMR spectroscopy and kinetic studies for the first time demonstrates 4-methyl benzyl alcohol as an important reaction intermediate in the hydrogenolysis of PET. Mechanistic studies indicate that the conversion of PET mainly follows a hydrogenolysis process, involving the cleavage of ester bonds to alcohols and the C-O bond cleavage of alcohols to alkanes. This work not only brings new insight for understanding the upgrading pathway of PET, but also provides a guidance for the design of high-performance non-precious catalysts for the chemical upcycling of plastic wastes.
Keywords: PET degradation * hydrogenolysis * CuZn/Al2O3 * PX.
© 2024 Wiley‐VCH GmbH.