Background: Pharmacogenetic testing improves the efficacy and safety of antidepressant pharmacotherapy for moderate-severe major depressive disorder by identifying genetic variations that influence medication metabolism, and adjusting treatment regimens accordingly. This study aims to assess the cost-effectiveness of implementing a pharmacogenetic testing approach to guide the prescription of antidepressants.
Methods: From the public hospital perspective, we developed a two-stage decision tree diagram of a short-term 6-week follow up, and a lifetime Markov model with 3-month cycles. The analysis compared the current standard of care with the alternative strategy of Pharmacogenetic-guided (multi-gene panel) testing in adult patients with moderate-severe major depressive disorder. Clinical outcomes and utilities were obtained from published studies, while healthcare costs were locally available. The short-term incremental cost-effectiveness ratio was against treatment response without side effects and without relapse, and against treatment response with/without side effects and without relapse. The long-term incremental cost-effectiveness ratio was against the quality-adjusted life year gained and years of life saved.
Results: Adopting the pharmacogenetic-guided therapy for adult patients with moderate-severe major depressive disorder in Qatar resulted in cost savings of Qatari Riyal 2,289 (95% confidence interval, -22,654-26,340) for the health system. In the short term, the pharmacogenetic-guided testing was associated with higher response rates without side effects and without relapse (mean difference 0.10, 95% confidence interval 0.09-0.15) and higher response rates with or without side effects and without relapse (mean difference 0.05, 95% confidence interval 0.04-0.06). For long term, the pharmacogenetic-guided testing resulted in 0.13 years of life saved and 0.06 quality-adjusted life year gained, per person, along with cost savings of Qatari Riyal 46,215 (95% confidence interval-15,744-101,758). The sensitivity analyses confirmed the robustness of the model results.
Conclusion: Implementing pharmacogenetic testing to guide antidepressant use was found to improve population health outcomes, while also significantly reducing health system costs.
Keywords: Pharmacogenetics; antidepressive agents; cost-effectiveness analysis; depressive disorder; quality-adjusted life years.
© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.