Sulfur-Rich Norbornadiene-Derived Infrared Transparent Polymers by Inverse Vulcanization

Angew Chem Int Ed Engl. 2024 Oct 29:e202419446. doi: 10.1002/anie.202419446. Online ahead of print.

Abstract

Infrared (IR) transparent polymer materials prepared by inverse vulcanization, as a promising candidate to replace inorganic materials, are new materials for constructing key devices in IR optics. However, it is difficult to achieve a balance between infrared optical and thermal properties in polymers due to the intrinsic infrared absorption of organic materials. Herein, our strategy is to construct a high boiling point symmetrical molecular norbornadiene derivative cross-linking agent (DMMD) which can be inverse vulcanized with molten sulfur, and obtain Poly (S-r-DMMD) with different sulfur content by controlling the feed ratio of sulfur. With the rigid core and low IR activity in DMMD, the prepared polymers exhibit tunable thermal properties (Tg: 98.3-119.8 °C) and high IR transmittance (medium-wave infrared region (MWIR): 42.9-52.6 %; long-wave infrared region (LWIR): 1.5-5.29 %). In addition, Poly (S-r-DMMD) can be used to prepare large-size free-standing Fresnel lenses for IR imaging by simple hot-pressing, which provides flexibility in the design and production of IR fine lenses. This study provides a novel strategy for balancing the thermal and optical properties of IR transparent polymer materials, while providing relevant references for balancing the IR optical and thermal properties of polymer materials.

Keywords: Elemental Sulfur; High Refractive Index; IR Transmission Polymer; Inverse Vulcanization; Norbornadiene.