Cucumis melo L., commonly known as melon, is a crucial horticultural crop. The selection and breeding of superior melon germplasm resources play a pivotal role in enhancing its marketability. However, current methods for melon appearance phenotypic analysis rely primarily on expert judgment and intricate manual measurements, which are not only inefficient but also costly. Therefore, to expedite the breeding process of melon, we analyzed the images of 117 melon varieties from two annual years utilizing artificial intelligence (AI) technology. By integrating the semantic segmentation model Dual Attention Network (DANet), the object detection model RTMDet, the keypoint detection model RTMPose, and the Mobile-Friendly Segment Anything Model (MobileSAM), a deep learning algorithm framework was constructed, capable of efficiently and accurately segmenting melon fruit and pedicel. On this basis, a series of feature extraction algorithms were designed, successfully obtaining 11 phenotypic traits of melon. Linear fitting verification results of selected traits demonstrated a high correlation between the algorithm-predicted values and manually measured true values, thereby validating the feasibility and accuracy of the algorithm. Moreover, cluster analysis using all traits revealed a high consistency between the classification results and genotypes. Finally, a user-friendly software was developed to achieve rapid and automatic acquisition of melon phenotypes, providing an efficient and robust tool for melon breeding, as well as facilitating in-depth research into the correlation between melon genotypes and phenotypes.
Keywords: Computer vision; Deep learning; Machine learning; Plant phenotyping.
© 2024. The Author(s).