Chiral (S)-o-fluorostyrene oxide (oFSO) and vicinal diol (R)-o-fluorophenylethane-1,2-diol (oFPED) are important intermediates for synthesizing treatments for neuropathic diseases. This study aimed to engineer Aspergillus usamii epoxide hydrolase (AuEH2) through a rational mutagenesis strategy to customize high enantioselectivity mutant for rac-oFSO. Out of 181 single-site mutants screened, six showed elevated enantiomeric ratio (E value) ranging from 32 to 108 according to E value and activity mutability landscapes. By combinatorial mutagenesis of A250I with other five single-site mutants, we constructed five double-site mutants, with the best-performing mutant, D5 (A250I/L344V), achieving an E value of 180. This mutant enabled the efficient kinetic resolution of 400 mM rac-oFSO in pure water system using E. coli/Aueh2A250I/L344V, yielding (S)-oFSO (>99 % ees, 50 % yields) and (R)-oFPED (>99 % eep, 50 % yieldp) with space-time yields (STYs) of 331.5 and 376.1 g/L/d, respectively. Combining crystal structure resolution with theoretical computations clarified the enantioselectivity mechanism of D5, demonstrating that A250I reduced the funnel-shaped substrate binding pocket (SBP) while L344V extended its bottom, enhancing specific recognition of (R)-oFSO and inhibiting (S)-oFSO hydrolysis. These findings provide valuable insights for designing highly enantioselective enzyme mutants, advancing the field of asymmetric synthesis of chiral compounds using green biocatalytic processes.
Keywords: Epoxide hydrolase; Rational mutagenesis; Structural mechanism; o-Fluorostyrene oxide.
Copyright © 2024 Elsevier B.V. All rights reserved.