Background/aim: Biomarkers indicating sensitivity to poly ADP-ribose polymerase (PARP) inhibitors have not yet been identified in gastric cancer. PARP inhibitors target homologous recombination deficiency (HRD); however, homologous recombination (HR) induces complex changes in gene expression, which makes it difficult to identify reliable biomarkers. In this study, we identified a multi-gene expression signature as a marker of PARP inhibitor sensitivity in gastric cancer.
Materials and methods: Seven gastric cancer cell lines were evaluated for susceptibility to PARP inhibitors using a growth inhibition assay. Gene expression profiling (GEP) was used to identify differentially expressed genes between PARP inhibitor-sensitive and -resistant cell lines. The resulting gene set was subjected to cluster analysis using tumor samples from 250 patients who underwent gastrectomy for primary gastroesophageal junction and gastric adenocarcinoma. HRD was defined as a truncating mutation in one or more of 22 HR-related genes and HRD scores were calculated using whole-exome sequencing data.
Results: In the growth inhibition assays, the HGC27 and HSC39 cell lines were sensitive to the PARP inhibitors, olaparib, and rucaparib, and were significantly correlated with the GEP results. Seven (2.8%) patients harbored truncating mutations in HR-related genes. A gene expression signature based on the top 100 high and low differentially expressed genes between sensitive and resistant cell lines revealed a patient cluster with a high prevalence of HR-related gene mutations and high HRD scores.
Conclusion: The 100-gene expression signature identified in this study may serve as a valuable predictive biomarker for PARP inhibitor sensitivity in gastric cancer.
Keywords: Ataxia telangiectasia mutated (ATM); BRCA; DNA damage repair; homologous recombination deficiency; olaparib; rucaparib.
Copyright © 2024 International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.