A large scale multi institutional study for radiomics driven machine learning for meningioma grading

Sci Rep. 2024 Oct 31;14(1):26191. doi: 10.1038/s41598-024-78311-8.

Abstract

This study aims to develop and evaluate radiomics-based machine learning (ML) models for predicting meningioma grades using multiparametric magnetic resonance imaging (MRI). The study utilized the BraTS-MEN dataset's training split, including 698 patients (524 with grade 1 and 174 with grade 2-3 meningiomas). We extracted 4872 radiomic features from T1, T1 with contrast, T2, and FLAIR MRI sequences using PyRadiomics. LASSO regression reduced features to 176. The data was split into training (60%), validation (20%), and test (20%) sets. Five ML algorithms (TabPFN, XGBoost, LightGBM, CatBoost, and Random Forest) were employed to build models differentiating low-grade (grade 1) from high-grade (grade 2-3) meningiomas. Hyperparameter tuning was performed using Optuna, optimizing model-specific parameters and feature selection. The CatBoost model demonstrated the best performance, achieving an area under the receiver operating characteristic curve (AUROC) of 0.838 [95% confidence interval (CI): 0.689-0.935], precision of 0.492 (95% CI: 0.371-0.623), recall of 0.838 (95% CI: 0.689-0.935), F1 score of 0.620 (95% CI: 0.495-0.722), accuracy of 0.729 (95% CI: 0.650-0.800), an area under the precision-recall curve (AUPRC) of 0.620 (95% CI: 0.433-0.753), and Brier score of 0.156 (95% CI: 0.122-0.200). Other models showed comparable performance, with mean AUROCs ranging from 0.752 to 0.784. The radiomics-based ML approach presented in this study showcases the potential for non-invasive and pre-operative grading of meningiomas using multiparametric MRI. Further validation on larger and independent datasets is necessary to establish the robustness and generalizability of these findings.

Keywords: Grading; MRI; Machine learning; Meningioma; Radiomics.

Publication types

  • Multicenter Study

MeSH terms

  • Adult
  • Aged
  • Algorithms
  • Female
  • Humans
  • Machine Learning*
  • Magnetic Resonance Imaging / methods
  • Male
  • Meningeal Neoplasms* / diagnostic imaging
  • Meningeal Neoplasms* / pathology
  • Meningioma* / diagnostic imaging
  • Meningioma* / pathology
  • Middle Aged
  • Multiparametric Magnetic Resonance Imaging / methods
  • Neoplasm Grading*
  • ROC Curve
  • Radiomics