Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction in manufacturing processes. In this manuscript, we present a new development in SWIR photodetection, exploiting the potential of metal halide perovskite materials. Our work introduces a cost-effective and easily fabricated SWIR photodetector with an ultrabroad detection range from 900 to 2500 nm, a room-temperature responsivity of 1.57 × 102 A/W, and a specific detectivity of 4.18 × 1010 Jones at 1310 nm. We then performed comprehensive static and time-resolved optical and electrical measurements under ambient conditions, complemented by extensive density functional theory simulations, validating the formation of heterojunctions within the intrinsic n-type and extrinsic p-type perovskite structures. The potential of our perovskite-based SWIR materials extends from photodetectors to photovoltaic cells and introduces a possibility for high SWIR responsivity at room temperature and atmospheric pressure, which promotes its economic efficiency.
© 2024 The Authors. Published by American Chemical Society.