The indispensability of a base in Suzuki-Miyaura coupling (SMC) employing organoboronic acids/esters is well recognized, which occasionally induces competitive protodeborylation in organoboron reagents. This phenomenon is particularly pronounced in fluorine-substituted aryl and heteroaryl boron compounds. Here, we show that direct SMC of naphthalene-1,8-diaminato (dan)-substituted aryl boron compounds, Ar-B(dan), characterized by its remarkable stability toward protodeborylation due to their diminished boron-Lewis acidity, occurs utilizing a weak base in conjunction with a palladium/copper cooperative catalyst system. The approach delineated in this study enables the efficient incorporation of various perfluoroaryl- and heteroaryl-B(dan) reagents, while maintaining high functional group tolerance. Furthermore, the inherent inertness of the B(dan) moiety allowed sequential cross-coupling, where other metallic moieties chemoselectively undergo the reaction, thus leading to the concise, protection-free synthesis of oligoarenes. Our results provide a potent approach to a delicate dilemma between a protodeborylation-resistant property and SMC activity intimately linked to boron-Lewis acidity.
© 2024 The Authors. Published by American Chemical Society.