Statistical method accounts for microscopic electric field distortions around neurons when simulating activation thresholds

bioRxiv [Preprint]. 2024 Oct 26:2024.10.25.619982. doi: 10.1101/2024.10.25.619982.

Abstract

Notwithstanding advances in computational models of neuromodulation, there are mismatches between simulated and experimental activation thresholds. Transcranial Magnetic Stimulation (TMS) of the primary motor cortex generates motor evoked potentials (MEPs). At the threshold of MEP generation, whole-head models predict macroscopic (at millimeter scale) electric fields (50-70 V/m) which are considerably below conventionally simulated cortical neuron thresholds (200-300 V/m). We hypothesize that this apparent contradiction is in part a consequence of electrical field warping by brain microstructure. Classical neuronal models ignore the physical presence of neighboring neurons and microstructure and assume that the macroscopic field directly acts on the neurons. In previous work, we performed advanced numerical calculations considering realistic microscopic compartments (e.g., cells, blood vessels), resulting in locally inhomogeneous (micrometer scale) electric field and altered neuronal activation thresholds. Here we combine detailed neural threshold simulations under homogeneous field assumptions with microscopic field calculations, leveraging a novel statistical approach. We show that, provided brain-region specific microstructure metrics, a single statistically derived scaling factor between microscopic and macroscopic electric fields can be applied in predicting neuronal thresholds. For the cortical sample considered, the statistical methods match TMS experimental thresholds. Our approach can be broadly applied to neuromodulation models, where fully coupled microstructure scale simulations may not be practical.

Keywords: Multiscale brain modeling; TMS; biophysical modeling; brain stimulation.

Publication types

  • Preprint