Vacancies Engineering in Molybdenum Boride MBene Nanosheets to Activate Room-Temperature Ferromagnetism

Adv Mater. 2025 Jan;37(1):e2411765. doi: 10.1002/adma.202411765. Epub 2024 Nov 2.

Abstract

The rapid development of low energy dissipation spintronic devices has stimulated the search for air-stable 2D nanomaterials possessing room-temperature ferromagnetism. Here the experimental realization of 2D Mo4/3B2 nanosheets is reported with intrinsic room-temperature ferromagnetic characteristics by vacancy engineering. These nanosheets are synthesized by etching the bulk MAB phase (Mo2/3Y1/3)2AlB2 into Mo4/3B2 nanosheets in ZnCl2 molten salt. The Mo4/3B2 nanosheets show robust intrinsic ferromagnetic properties, with a saturation magnetic moment of 0.044 emu g-1 at 300 K, while vacancy-free MoB MBene exhibits paramagnetism. It is elucidated that the Mo-vacancy defect generates large density of states near the Fermi surface and spontaneously spin-split bands through first-principles calculations, which contributes to the non-zero magnetic moment in Mo4/3B2 nanosheets. This work lays the groundwork for activating the magnetic properties of MBene nanosheets by vacancy engineering, offering the possibilities for development of practical spintronic devices.

Keywords: MBene; molybdenum boride; nanosheets; room‐temperature ferromagnetism.