Integrating 2D NMR-based metabolomics and in vitro assays to explore the potential viability of cultivated Ophiocordyceps sinensis as an alternative to the wild counterpart

J Pharm Biomed Anal. 2024 Oct 28:253:116551. doi: 10.1016/j.jpba.2024.116551. Online ahead of print.

Abstract

Ophiocordyceps sinensis is widely used to treat various diseases and as a health supplement. The present study comprehensively compared the metabolic differences between wild and cultivated O. sinensis through 2D 1H-13C HSQC-based metabolomics, and assessed their anti-lung cancer activity on A549 cells. To characterize the global metabolic profile, sample preparation was scrutinously optimized, and both polar (1:4 methanol-water) and non-polar (1:4 methanol-chloroform) extracts of O. sinensis were investigated. A total of 47 and 10 metabolites were identified in the polar and non-polar extracts, respectively. Principal Component Analysis (PCA) revealed greater differences between the two types of O. sinensis in the polar extracts than in the non-polar extracts. Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) together with univariate tests captured 23 and 19 differential spectral features (with 22 and 11 of them assigned) between wild and cultivated O. sinensis in the polar and non-polar extracts, respectively. Meanwhile, the anti-lung cancer activities of both polar and non-polar extracts of wild and cultivated O. sinensis were assessed by MTS assay on A549 cells, and the sterols found in non-polar extracts, such as ergosterol, ergosterol peroxide, and 9,11-dehydroergosterol peroxide, and β-sitosterol, are the active ingredients with potential anti-lung cancer properties. In this study, we introduced a comprehensive strategy integrating 2D NMR-based metabolomics with in vitro assays for comparing the chemical composition and assessing the pharmacological activity of wild and cultivated O. sinensis. Our results provided a scientific basis for the potential viability of cultivated O. sinensis as an alternative to the wild counterpart.

Keywords: 2D NMR; Anti-lung cancer activity; Metabolic profiling; Multivariate analysis; Ophiocordyceps sinensis; Optimized sample preparation.