The clinical implication of clarithromycin (CLT) is compromised owing to its poor solubility and, subsequently, bioavailability, unpalatable taste, rapid metabolism, short half-life, frequent dosing, and adverse effects. The present investigation provides an innovative sustained-release oral drug delivery strategy that tackles these challenges. Accordingly, CLT was loaded into a cubosome, a vesicular system with a bicontinuous cubic structure that promotes solubility and bioavailability, provides a sustained release system combating short half-life and adverse effects, masks unpleasant taste, and protects the drug from destruction in gastrointestinal tract (GIT). Nine various formulas were fabricated using the emulsification method. The resulting vesicles increased the encapsulation efficiency (EE %) from 57.64 ± 0.04 % to 96.80 ± 1.50 %, the particle size (PS) from 147.30 ± 21.77 nm to 216.61 ± 5.37 nm, and the polydispersity index (PDI) values ranged from 0.117 ± 0.024 to 0.278 ± 0.073. The zeta potential (ZP) changed from -20.65 ± 2.01 mV to -33.98 ± 2.60 mV. Further, the release profile exhibited a dual release pattern within 24 h., with the percentage of cumulative release (CR %) expanding from 30.06 ± 0.42 % to 98.49 ± 2.88 %, optimized formula was found to be CC9 with EE % = 96.80 ± 1.50 %, PS = 216.61 ± 5.37 nm, ZP = -33.98 ± 2.60 mV, PDI = 0.117 ± 0.024, CR % = 98.49 ± 2.88 % and IC50 of 0.74 ± 0.19 µg/mL against HepG-2 cells with scattered unilamellar cubic non-agglomerated vesicles. Additionally, it exhibited higher anti-MRSA biofilm, relative bioavailability (2.8 fold), and anti-inflammatory and antimicrobial capacity against Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis, and Staphylococcus aureus compared to free CLT. Our data demonstrate that cubosome is a powerful nanocarrier for oral delivery of CLT, boosting its biological impacts and pharmacokinetic profile.
Keywords: Anti liver cancer; Anti-inflammatory; Antibacterial; Antibiofilm; Clarithromycin; Cubosome; Sustained release.
Copyright © 2024 Elsevier B.V. All rights reserved.