Development of Innovative Electrospun Nepafenac-Loaded Nanofibers-based Ophthalmic Inserts

Int J Pharm. 2023 Oct 28:123554. doi: 10.1016/j.ijpharm.2023.123554. Online ahead of print.

Abstract

Electrospun nanofibers can be utilized to develop patient-centric ophthalmic formulations with reasonable bioavailability at the targeted site. The current study aimed to develop 0.1% w/w of nepafenac-loaded electrospun nanofibrous webs as potential candidates for ocular delivery of nepafenac with improved solubility and stability. Nine different formulations were prepared by electrospinning and investigated for morphology, physicochemical properties, drug release, cytocompatibility, and in vitro and ex vivo permeability. The scanning electron microscopy images showed fibrous samples. Fourier transform infrared spectroscopy and X-ray diffraction confirmed the polymer cross-linking and the formation of amorphous solid dispersion. All formulations showed complete and fast release of nepafenac (≤ 60 minutes), and the release followed first-order kinetics (β values for all formulations were <1). The formulations (F3, F6, and F9) showed considerable in vitro and ex vivo permeability. The Raman studies revealed comparable corneal distributions of F3 and the commercial Nevanac® suspension at 60 min (p value = 0.6433). The fibrous composition remains stable under stress conditions (40 ± 2 °C, 75 ± 5% relative humidity). The formulation composition showed good cytocompatibility with hen eggs tested on the chorioallantoic membrane of chick embryos. The developed nanofiber webs could be a promising candidate for nepafenac-loaded ophthalmic inserts. Chemical compounds studied in this article Nepafenac (PubChem CID151075); Polyvinyl alcohol (PubChem CID 11199); Poloxamer 407 (PubChem CID 24751); Chloroform (PubChem CID 6212); Methanol (PubChem CID 887); L-α-phosphatidylcholine (PubChem CID 10425706); Ethylenediaminetetraacetic acid (PubChem CID 6049).

Keywords: Nepafenac-loaded formulations; accelerated stability test; cytocompatibility study; electrospun nanofiber-based ocular insert; ex vivo permeability study; in vitro dissolution study; morphological and solid-state characterization.