The global transition towards sustainable living has led to a growing demand for innovative food products that enhance environmental sustainability. Traditional meat production is known for its high energy consumption and significant carbon emissions, necessitating alternative approaches. Plant-based meat (PBM) offers a promising solution to reduce the ecological footprint of animal agriculture. This paper examines various challenges in PBM development, including nutritional equivalence, industrial scalability, organoleptic properties, and digestibility. Addressing these challenges requires interdisciplinary collaboration to ensure consumer acceptance, regulatory compliance, and environmental stewardship. Advanced technologies like nanotechnology, fermentation, and enzymatic hydrolysis, along with automation and repurposing cattle farms, offer solutions to enhance PBM's quality and production efficiency. By integrating these innovations, PBM has the potential to revolutionize the food industry, offering sustainable and nutritious alternatives that meet global dietary needs while significantly reducing environmental impact.
Keywords: Consumer acceptance; Organoleptic properties; Plant proteins; Sustainability; Techno-functional properties.
© The Korean Society of Food Science and Technology 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.