Platinum (Pt) nanoparticles are widely used as catalysts in proton exchange membrane fuel cells. In recent decades, sputter deposition onto liquid substrates has emerged as a potential alternative for nanoparticle synthesis, offering a synthesis process free of contaminant oxygen, capping agents, and chemical precursors. Here, we present a method for the synthesis of supported nanoparticles based on magnetron sputtering onto liquid poly(ethylene glycol) (PEG) combined with a heat-treatment step for attachment of nanoparticles to a carbon support. Transmission electron microscopy imaging reveals Pt nanoparticle growth during the heat-treatment process, facilitated by the carbon support and the reducing properties of PEG. Following the heat treatment, a bimodal size distribution of Pt nanoparticles is observed, with sizes of 2.5 ± 0.8 and 6.7 ± 1.8 nm, compared to 1.8 ± 0.4 nm after sputtering. Synthesized Pt nanoparticles display excellent specific and mass activities for the oxygen reduction reaction, with 1.75 mA/cm2 Pt and 0.27 A/mgPt respectively, measured at 0.9 V vs the reversible hydrogen electrode. The specific activities reported herein outperform literature values of commercial Pt/C catalysts with similar loading and are on par with values of bulk Pt and mass-selected nanoparticles of comparable size. Also, the mass activities agree well with the literature values. The results provide new insights into the growth processes of SoL-synthesized carbon-supported Pt catalyst nanoparticles, and most crucially, the high performance of the synthesized catalyst layers, along with the possibility of nanoparticle growth through a straightforward heat-treatment step at relatively low temperatures, offer a scalable new approach for producing fuel cell catalysts with more efficient material utilization and new material combinations.
© 2024 The Authors. Published by American Chemical Society.