Morphological similarity and white matter structural mapping of new daily persistent headache: a structural connectivity and tract-specific study

J Headache Pain. 2024 Nov 4;25(1):191. doi: 10.1186/s10194-024-01899-9.

Abstract

Background: New daily persistent headache (NDPH) is a rare primary headache disorder characterized by daily and persistent sudden onset headaches. Specific abnormalities in gray matter and white matter structure are associated with pain, but have not been well studied in NDPH. The objective of this work is to explore the fiber tracts and structural connectivity, which can help reveal unique gray and white matter structural abnormalities in NDPH.

Methods: The regional radiomics similarity networks were calculated from T1 weighted (T1w) MRI to depict the gray matter structure. The fiber connectivity matrices weighted by diffusion metrics like fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD) were built, meanwhile the fiber tracts were segmented by anatomically-guided superficial fiber segmentation (Anat-SFSeg) method to explore the white matter structure from diffusion MRI. The considerable different neuroimaging features between NDPH and healthy controls (HC) were extracted from the connectivity and tract-based analyses. Finally, decision tree regression was used to predict the clinical scores (i.e. pain intensity) from the above neuroimaging features.

Results: T1w and diffusion MRI data were available in 51 participants after quality control: 22 patients with NDPH and 29 HCs. Significantly decreased morphological similarity was found between the right superior frontal gyrus and right hippocampus. The superficial white matter (SWM) showed significantly decreased FA in fiber tracts including the right superficial-frontal, left superficial-occipital, bilateral superficial-occipital-temporal (Sup-OT) and right superficial-temporal, meanwhile significant increased RD was found in the left Sup-OT. For the fiber connectivity, NDPH showed significantly decreased FA in the bilateral basal ganglion and temporal lobe, increased MD in the right frontal lobe, and increased RD in the right frontal lobe and left temporal-occipital lobe. Clinical scores could be predicted dominantly by the above significantly different neuroimaging features through decision tree regression.

Conclusions: Our research indicates the structural abnormalities of SWM and the neural pathways projected between regions like right hippocampus and left caudate nucleus, along with morphological similarity changes between the right superior frontal gyrus and right hippocampus, constitute the pathological features of NDPH. The decision tree regression demonstrates correlations between these structural changes and clinical scores.

Keywords: Diffusion MRI; Diffusion tensor imaging; New daily persistent headache; Structural connectivity; White matter.

MeSH terms

  • Adult
  • Diffusion Magnetic Resonance Imaging / methods
  • Diffusion Tensor Imaging / methods
  • Female
  • Gray Matter* / diagnostic imaging
  • Gray Matter* / pathology
  • Headache Disorders / diagnostic imaging
  • Headache Disorders / pathology
  • Humans
  • Magnetic Resonance Imaging / methods
  • Male
  • Middle Aged
  • White Matter* / diagnostic imaging
  • White Matter* / pathology
  • Young Adult