Wasserstein regression with empirical measures and density estimation for sparse data

Biometrics. 2024 Oct 3;80(4):ujae127. doi: 10.1093/biomtc/ujae127.

Abstract

The problem of modeling the relationship between univariate distributions and one or more explanatory variables lately has found increasing interest. Existing approaches proceed by substituting proxy estimated distributions for the typically unknown response distributions. These estimates are obtained from available data but are problematic when for some of the distributions only few data are available. Such situations are common in practice and cannot be addressed with currently available approaches, especially when one aims at density estimates. We show how this and other problems associated with density estimation such as tuning parameter selection and bias issues can be side-stepped when covariates are available. We also introduce a novel version of distribution-response regression that is based on empirical measures. By avoiding the preprocessing step of recovering complete individual response distributions, the proposed approach is applicable when the sample size available for each distribution varies and especially when it is small for some of the distributions but large for others. In this case, one can still obtain consistent distribution estimates even for distributions with only few data by gaining strength across the entire sample of distributions, while traditional approaches where distributions or densities are estimated individually fail, since sparsely sampled densities cannot be consistently estimated. The proposed model is demonstrated to outperform existing approaches through simulations and Environmental Influences on Child Health Outcomes data.

Keywords: Fréchet mean; Wasserstein distance; distributional data analysis; multi-cohort study; optimal transport; sample of distributions.

MeSH terms

  • Biometry / methods
  • Child
  • Computer Simulation*
  • Data Interpretation, Statistical
  • Humans
  • Models, Statistical*
  • Regression Analysis
  • Sample Size