Whole-Process Privacy-Preserving and Sybil-Resilient Consensus for Multiagent Networks

IEEE Trans Neural Netw Learn Syst. 2024 Nov 5:PP. doi: 10.1109/TNNLS.2024.3488115. Online ahead of print.

Abstract

This article is concerned with the co-design of privacy-preserving and resilient consensus protocol for a class of multiagent networks (MANs), where the information exchanges over communication networks among the agents suffer from eavesdropping and Sybil attacks. First, we introduce a new attack model in which an adversarial agent could launch a Sybil attack, generating a large number of spurious entities in the network, thereby gaining disproportionate influence. In this communication framework, a whole-process privacy-preserving mechanism is designed that is capable of protecting both initial and current states of agents. Then, instead of existing methods requiring identifying and mitigating Sybil nodes, a degree-based mean-subsequence-reduced (D-MSR) resilient strategy is implemented, showcasing its significant properties: 1) ensuring the effectiveness of aforementioned designed privacy protection strategy; 2) allowing the network to contain Sybil nodes without elimination; and 3) reaching consensus among the normal agents. Finally, several numerical simulations are provided to validate the effectiveness of the proposed results.