A tranexamic acid-functionalized acellular dermal matrix sponge co-loaded with magnesium ions: Enhancing hemostasis, vascular regeneration, and re-epithelialization for comprehensive diabetic wound healing

Biomater Adv. 2024 Oct 31:167:214096. doi: 10.1016/j.bioadv.2024.214096. Online ahead of print.

Abstract

Excessive inflammation, accumulation of wound exudate, and blood seepage are common in diabetic wounds, hindering cell proliferation and disrupting tissue remodeling, leading to delayed healing. This study presents a multifunctional sponge scaffold (P5T3@Mg) created by combining an acellular dermal matrix with tranexamic acid and MgO nanoparticles, designed for hemostatic and anti-inflammatory effects. The P5T3@Mg scaffold effectively absorbs wound fluid while promoting healing. In vivo and in vitro hemostasis experiments demonstrate that the P5T3@Mg sponge exhibits excellent hydrophilicity, enhancing blood absorption at the wound site, inhibiting fibrinolysis, and expediting hemostasis. Additionally, the sustained release of Mg2+ from the P5T3@Mg sponge promotes collagen deposition and angiogenesis in diabetic rat wounds, suppressing chronic inflammation and accelerating tissue remodeling and repair.

Keywords: Acellular dermal matrix; Hemostasis; Magnesium oxide; Tranexamic acid; Wound healing.