Objective: To investigate the mechanism of gastrodin for inhibiting microglia-mediated inflammation after hypoxicischemic brain damage (HIBD) in neonatal rats.
Methods: Thirty-nine 3-day-old SD rats were randomly divided into sham group, HIBD group and gastrodin treatment group. Western blotting was used to detect the expressions of TNF-α, IL-1β, IL-10 and TGF- β1 in the corpus callosum of the rats. The potential targets of gastrodin for treatment of HIBD were screened by network pharmacology analysis. The expressions of PI3K/AKT signaling pathway proteins following HIBD-induced microglial activation in the rats and in cultured microglial BV-2 cells with oxygen-glucose deprivation (OGD) were detected with Western blotting. The effects of LY294002 (a specific inhibitor of the PI3K/AKT pathway) and gastrodin on TNF-α and TGF-β1 mRNA levels in BV-2 cells with OGD was detected with RT-qPCR.
Results: In the neonatal rats with HIBD, gastrodin treatment significantly decreased TNF-α and IL-1β expressions and enhanced IL-10 and TGF-β1 expressions in the ischemic corpus callosum. Network pharmacology analysis showed significant enrichment of the PI3K/AKT signaling pathway and a strong binding between gastrodin and PI3K. Gastrodin significantly promoted PI3K and AKT phosphorylation in neonatal rats with HIBD and in BV-2 cells exposed to OGD. In BV-2 cells with OGD, gastrodin obviously suppressed OGD-induced increase of TNF-α and reduction of TGF-β1 mRNA expressions, and this effect was strongly attenuated by LY294002 treatment.
Conclusion: Gastrodin can inhibit microglia-mediated inflammation in neonatal rats with HIBD by regulating the PI3K/AKT signaling pathway.
Keywords: PI3K/AKT; gastrodin; hypoxic-ischemic brain damage; inflammatory response; microglia; oxygen and sugar deprivation.