Real-time non-line-of-sight computational imaging using spectrum filtering and motion compensation

Nat Comput Sci. 2024 Dec;4(12):920-927. doi: 10.1038/s43588-024-00722-4. Epub 2024 Nov 6.

Abstract

Non-line-of-sight (NLOS) imaging aims at recovering the shape and albedo of hidden objects. Despite recent advances, real-time video of complex and dynamic scenes remains a major challenge owing to the weak signal of multiply scattered light. Here we propose and demonstrate a framework of spectrum filtering and motion compensation to realize high-quality NLOS video for room-sized scenes. Spectrum filtering leverages a wave-based model for denoising and deblurring in the frequency domain, enabling computational image reconstruction with a small number of sampling points. Motion compensation tailored with an interleaved scanning scheme can compute high-resolution live video during the acquisition of low-quality image sequences. Together, we demonstrate live NLOS videos at 4 fps for a variety of dynamic real-life scenes. The results mark a substantial stride toward real-time, large-scale and low-power NLOS imaging and sensing applications.