Breaking Mass Transport Limit for Hydrogen Evolution-Inhibited and Dendrite-Free Aqueous Zn Batteries

Adv Mater. 2025 Jan;37(1):e2410244. doi: 10.1002/adma.202410244. Epub 2024 Nov 6.

Abstract

It is commonly accepted that batteries perform better at low current densities below the mass-transport limit, which restricts their current rate and capacity. Here, it is demonstrated that the performance of Zn metal electrodes can be dramatically enhanced at current densities and cut-off capacities exceeding the mass-transport limit by using pulsed-current protocols. These protocols achieve cumulative plating/stripping capacities of 11.0 Ah cm-2 and 3.8 Ah cm-2 at record-high current densities of 80 and 160 mA cm-2, respectively. The study identifies and understands the promoted (002)-textured Zn growth and suppressed hydrogen evolution based on the thermodynamics and kinetics of competing reactions. Furthermore, the over-limiting pulsed-current protocol enables long-life Zn batteries with high mass loading (29 mgcathode cm-2) and high areal capacity (7.9 mAh cm-2), outperforming cells using constant-current protocols at equivalent energy and time costs. The work provides a comprehensive understanding of the current-capacity-performance relationship in Zn plating/stripping and offers an effective strategy for dendrite-free metal batteries that meet practical requirements for high capacity and high current rates.

Keywords: Zn battery; high mass loading; mass transport limit; metal batteries; pulsed current.