The evolution of antimicrobial-resistant strains jeopardizes the existing clinical drugs and demands new therapeutic interventions. Herein, we report the synthesis of cationic thiazolidine bearing a quaternary pyridinium group, in which thiazolidine was N-acylated with fatty acid to establish a hydrophilic-lipophilic balance that disrupts bacterial membranes. The bacterial growth inhibition assays and hemolytic activity against human red blood cells indicate that the N-acylated cationic thiazolidine (QPyNATh) inhibits Gram-positive bacteria at lower minimum inhibitory concentrations (MIC) and is selective for bacteria over mammalian cells. N-Acylation modulates MIC, and it is found that the N-palmitoylated compound, QPyN16Th, had the lowest MIC (1.95 μM) against Gram-positive, Enterococcus faecalis, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). In contrast, the N-myristoylated compound, QPyN14Th, showed the lowest MIC (31.25 μM) against Gram-negative, Escherichia coli, uropathogenic Escherichia coli, and Pseudomonas aeruginosa. At 1× MIC, QPyNATh permeabilizes the bacterial membrane, depolarizes the cytoplasmic membranes, and produces excess reactive oxygen species to kill the bacteria, as evidenced by live and dead staining. Interestingly, only QPyNATh containing a palmitoyl acyl chain demonstrated membrane-damaging activity at 2 μM concentrations, suggesting that the optimal hydrophilic-lipophilic balance enables QPyN16Th to selectively kill Gram-positive bacteria at lower doses. S. aureus develops resistance to ciprofloxacin quickly; however, no resistance to QPyN16Th is observed after several passages. As a proof of concept, the animal study revealed that QPyN16Th treatment reduced the bacterial burden in MRSA-infected zebrafish, allowing them to recover from infection and resume normal life. The results imply that lipidation and derivatizing thiazolidine with cationic charge offer an antimicrobial that is selective to treat Gram-positive bacterial infections, biocompatible, and less prone to develop resistance.
This journal is © The Royal Society of Chemistry.