Phase-separated chromatin compartments: Orchestrating gene expression through condensation

Cell Insight. 2024 Oct 12;3(6):100213. doi: 10.1016/j.cellin.2024.100213. eCollection 2024 Dec.

Abstract

Eukaryotic genomes are organized into distinct chromatin compartments, some of which exhibit properties of biomolecular condensates. These condensates primarily form due to chromatin-associated proteins/complexes (CAPs). CAPs play a crucial role in gene expression, functioning as either transcriptional repressors or activators. Phase separation, a well-established biophysical phenomenon, is a key driver of chromatin condensate formation by CAPs. Notably, multivalent CAPs with the ability to engage in diverse interactions promote chromatin compaction, leading to the formation of transcriptionally repressed compartments. Conversely, interactions between intrinsically disordered region (IDR)-containing transcriptional regulators, mediated by their multivalent IDRs, lead to the formation of protein-rich, transcriptionally active droplets on decondensed genomic regions. Interestingly, both repressive heterochromatin and activating euchromatin condensates exhibit spontaneous phase separation and selectively enrich components with concordant transcriptional functions. This review delves into the mechanisms by which transcriptionally repressive CAPs orchestrate the formation of repressed chromatin domains. We further explore how a diverse array of transcription-related CAPs or core histone variants, via phase separation, influence gene expression by inducing erroneous transcription events, regulating expression levels, and facilitating the interconversion of transcriptionally repressed and active regions.

Keywords: Chromatin compartmentalization; Chromatin-associated proteins/complexes; Gene expression regulation; Phase separation.

Publication types

  • Review