Isolation of B Cells Using Silane-Coated Magnetic Nanoparticles

Int J Biomater. 2024 Oct 30:2024:8286525. doi: 10.1155/2024/8286525. eCollection 2024.

Abstract

One of the most important advantages and applications of coated nanoparticles in biological applications is their use in isolating different types of cells to diagnose and treat all types of diseases. Therefore, in this research work, the possibility of isolation and enrichment of B cells using magnetic iron oxide nanoparticles have been investigated. In this regard, magnetic nanoparticles are first coated with (3-aminopropyl)triethoxysilane to make them hydrophilic and prevent their clumping, then reacted with and rendered biocompatible by FITC anti-human CD20 antibody. These nanoparticles containing antibodies have been used to isolate B cells from the lymphatic cells. Transmission electron microscopy (TEM) and vibrating-sample magnetometry (VSM) tests were used to check the magnetic properties and coating of nanoparticles. The flow cytometry and fluorescent microscopy tests are used to check antibody binding to nanoparticles. Moreover, flow cytometry tests were used to check the extent of cell separation. Results show that nanoparticles reacted with 450 μL of antibody (T450) performed better than other nanoparticles in isolating B cells.

Keywords: B cell isolation; FITC anti-human CD20 antibody; magnetic nanoparticles; silane.