In non-Hermitian open quantum systems, such as polariton condensates, the local tailoring of gains and losses opens up an interesting possibility to realize functional optical elements. Here, we demonstrate that deliberately introducing losses via a photonic defect, realized by reducing the quality factor of a DBR mirror locally within an ultrahigh-quality microcavity, may be utilized to create directed polariton currents towards the defect. We discuss the role of polariton-polariton interactions in the process and how to tailor the effective decay time of a polariton condensate by coupling it to the defect. Our results highlight the far-reaching potential of non-Hermitian physics in polaritonics.
Keywords: defect state; exciton–polaritons; microcavity; nonlinear optical properties; strong coupling.