Prognostic Indicators for Precision Treatment of Non-Small Cell Lung Carcinoma

Cells. 2024 Oct 28;13(21):1785. doi: 10.3390/cells13211785.

Abstract

Non-small cell lung cancer (NSCLC) has established predictive biomarkers that enable decisions on treatment regimens for many patients. However, resistance to therapy is widespread. It is therefore essential to have a panel of molecular biomarkers that may help overcome therapy resistance and prevent adverse effects of treatment. We performed in silico analysis of NSCLC prognostic indicators, separately for adenocarcinomas and squamous carcinomas, by using The Cancer Genome Atlas (TCGA) and non-TCGA data sources in cBioPortal as well as UALCAN. This review describes lung cancer biology, elaborating on the key genetic alterations and specific genes responsible for resistance to conventional treatments. Importantly, we examined the mechanisms associated with resistance to immune checkpoint inhibitors. Our analysis indicated that a robust prognostic biomarker was lacking for NSCLC, especially for squamous cell carcinomas. In this work, our screening uncovered previously unidentified prognostic gene expression indicators, namely, MYO1E, FAM83 homologs, and DKK1 for adenocarcinoma, and FGA and TRIB1 for squamous cell carcinoma. It was further observed that overexpression of these genes was associated with poor prognosis. Additionally, FAM83 homolog and TRIB1 unexpectedly harbored copy number amplifications. In conclusion, this study elucidated novel prognostic indicators for NSCLC that may serve as targets to overcome therapy resistance toward improved patient outcomes.

Keywords: lung cancer; precision medicine; prognostic marker; therapy resistance.

Publication types

  • Review

MeSH terms

  • Biomarkers, Tumor* / genetics
  • Biomarkers, Tumor* / metabolism
  • Carcinoma, Non-Small-Cell Lung* / drug therapy
  • Carcinoma, Non-Small-Cell Lung* / genetics
  • Carcinoma, Non-Small-Cell Lung* / pathology
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Lung Neoplasms* / drug therapy
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / pathology
  • Precision Medicine / methods
  • Prognosis

Substances

  • Biomarkers, Tumor

Grants and funding

This research received no external funding.