Soybean β-Conglycinin and Cowpea β-Vignin Peptides Inhibit Breast and Prostate Cancer Cell Growth: An In Silico and In Vitro Approach

Foods. 2024 Nov 1;13(21):3508. doi: 10.3390/foods13213508.

Abstract

B-cell lymphoma 2 protein (Bcl-2) is an important regulator of cell apoptosis. Inhibitors that mirror the structural domain 3 (BH3) of Bcl-2 can activate apoptosis in cancer cells, making them a promising target for anticancer treatment. Hence, the present study aimed to investigate potential BH3-mimetic peptides from two vicilin-derived legume proteins from soybean and cowpea bean. The proteins were isolated and sequentially hydrolyzed with pepsin/pancreatin. Peptides < 3 kDa from vicilin-derived proteins from soybean and cowpea beans experimentally inhibited the growth of cultivated breast and prostate cancer cells. In silico analysis allowed the identification of six potential candidates, all predicted to be able to interact with the BH3 domain. The VIPAAY peptide from the soybean β-conglycinin β subunit showed the highest potential to interact with Bcl-2, comparable to Venetoclax, a well-known anticancer drug. Further experiments are needed to confirm this study's findings.

Keywords: BH3-mimetic effect; Bcl-2; VIPAAY peptide; cell viability; docking; leguminous bioactive peptides; structure–activity relationships.