Antioxidative and Cytoprotective Effects of Rosa Roxburghii and Metabolite Changes in Oxidative Stress-Induced HepG2 Cells Following Rosa Roxburghii Intervention

Foods. 2024 Nov 4;13(21):3520. doi: 10.3390/foods13213520.

Abstract

Rosa Roxburghii (RR), a traditional Chinese medicinal fruit, is rich in bioactive substances that make it a potential natural antioxidant resource. This research aimed to study the antioxidant properties of RR by in vitro experiments and through intracellular assessment in H2O2-induced HepG2 cells. A non-targeted metabolic analysis was conducted to indicate changes in intracellular and extracellular metabolites. Differential metabolites and metabolic pathways were explored using PCA, PLS-DA, and KEGG pathway analysis. The results showed that RR rich in bioactive substances exhibited a significant antioxidative property in vitro and intracellularly. This property may be achieved by scavenging free radicals, increasing the activity of catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and the levels of bicinchoninic acid (BCA) while reducing the reactive oxygen species (ROS) generation. This study identified 13 differential metabolites intracellularly and 7 extracellularly, among which the key differential metabolites included D-glucopyranose, D-mannose, fructose, citric acid, malic acid, cholesterol, and cholestenone. These key metabolites primarily regulated glucose-related metabolism, the citrate cycle, and the primary bile acid biosynthesis pathway in H2O2-induced HepG2 cells. These findings provide potential application evidence of RR in the development of natural resources for functional foods.

Keywords: HepG2; Rosa Roxburghii; antioxidants; natural products; oxidative stress.

Grants and funding

This research received no external funding.