Here, we report a reprocessible, reusable, self-healing, and form-switching polymeric adsorbent for remediating fluorinated pollutants in water. The copolymer hydrogel is designed to contain fluorophilic segments and cationic segments to induce strong binding with perfluorinated pollutants. The sorption performance reveals rapid and quantitative removal of these pollutants, driven by the synergistic effect of fluorophilic and electrostatic interaction. Importantly, a disulfide-containing dynamic crosslinker plays a crucial role in imparting multifunctionality. This enables self-healing by the restoration of crosslinks at the cut surfaces by disulfide exchange reactions and allows for the repeated use of the adsorbent via multiple adsorption-desorption cycles. Furthermore, the adsorbent is reprocessible by cleaving the crosslinks to afford linear copolymers, which can be repolymerized into a hydrogel network on demand. Also, form-switching capability is showcased through the aqueous self-assembly of linear copolymers into a fluorinated micelle, serving as another form of adsorbent for pollutant removal.
Keywords: adsorbent; fluorinated hydrogel; reprocessible; reusable; self-healing.