A Series of Rare-Earth Metal-Based Coordination Polymers: Fluorescence and Sensing Studies

Sensors (Basel). 2024 Oct 25;24(21):6867. doi: 10.3390/s24216867.

Abstract

Ratiometric fluorescent sensing based on dual-emitting fluorescent coordination polymers (FL-CPs) has attracted intense attention due to their sensing accuracy and easy visualization when compared with sensing relying solely on monochromatic FL-CPs. In this work, a series of rare-earth metal-based CPs, formuled as [(CH3)2NH2][Ln(bpdc)2] (Ln3+ = Y3+, Eu3+ and Tb3+, H2bpdc = biphenyl-4,4'-dicarboxylic acid), are presented, which show dual emission aroused from the Ln3+ ions and the inefficient intermolecular energy transfer from ligands to Ln3+ metals. For clarity, the as-made Ln-CPs are named Eu-bpdc, Tb-bpdc, and Y-bpdc based on the corresponding Ln3+. Notably, Eu-bpdc, presented as an example, could be used as FL sensing material ratiometric to Fe3+ ions. The ratio of FL intensity of Eu3+ ions to bpdc2- ligands (I415/I615) showed a good linear relationship with the concentrations of Fe3+ ions. Moreover, the detection process could be visibly monitored through a change from purple to blue when Eu-bpdc was used as an FL proble. This work provides a good example for exploring visibly ratiometric sensors based on FL-CPs.

Keywords: FL-CPs; dual emission; rare earth metals; ratiometric sensing.

Grants and funding

This research was funded by the National Natural Science Foundation of China (Nos. 22175178 and 22305019).