The endogenous neuromodulator adenosine is massively released during hypoxic/ischemic insults and differentially modulates post-ischemic damage depending on the expression and recruitment of its four metabotropic receptor subtypes, namely A1, A2A, A2B and A3 receptors (A1Rs, A2ARs, A2BRs and A3Rs). We previously demonstrated, by using a model of transient middle cerebral artery occlusion (tMCAo) in rats, that selective activation of A2ARs, as well as A2BRs, ameliorates post-ischemic brain damage in contrast to neuroinflammation. In the present study, we investigated whether the multitarget nucleoside MRS3997, a full agonist at both A2ARs and A2BRs, would afford higher neuroprotection in post-ischemic damage. Chronic systemic treatment with MRS3997 reduced neurological deficit, body weight loss and infarct volume in the cortex and striatum measured 7 days after ischemia. The dual agonist counteracted neuronal loss, reduced myelin damage, and prevented morphological changes indicative of microglia and astrocyte activation. Finally, MRS3997 shifted plasma cytokine levels to an anti-inflammatory profile. These effects were preceded, at 2 days after the insult, by a reduced granulocyte infiltration in the ischemic cortex and, differently from what was observed with selective A2AR or A2BR agonism, also in striatum. In summary, we demonstrate here that MRS3997, systemically administered for 7 days after tMCAO, protects ischemic areas from neuronal and glial damage and inhibits neuroinflammation, therefore representing an attractive strategy to ameliorate post-stroke damage and neurological symptoms.
Keywords: Adenosine A(2A) receptors; Adenosine A(2B) receptors; Cerebral ischemia; Multitarget drugs; Neuroinflammation.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.