Patients with diabetes mellitus show an elevated prevalence of psychiatric disorders such as anxiety. We have reported that fear memory, a model related to anxiety as reflected in the freezing response, is enhanced in diabetic mice and was ameliorated by an AMPA receptor antagonist. The present study investigated whether functions of AMPA receptors in the amygdala and hippocampus are altered in streptozotocin (STZ)-induced diabetic mice. While protein levels of the GluA1 subunit of AMPA receptors were not altered in the amygdala and hippocampus, protein levels of GluA1 phosphorylated at serine 845 in the amygdala and hippocampus and of GluA1 phosphorylated at serine 831 in the hippocampus were increased in STZ-induced diabetic mice. L-lactate, which is increased in the amygdala and hippocampus of STZ-induced diabetic mice, did not alter these protein levels in either brain area. In contrast, protein levels of phosphorylated protein kinase A (PKA) catalytic subunit and phosphorylated calcium calmodulin kinase II (CaMKII), which are known to phosphorylate serine 845 and serine 831 of GluA1, respectively, were increased in the amygdala and hippocampus of STZ-induced diabetic mice. In the fear memory test, the PKA inhibitor H-89 injected before test sessions and the CaMKII inhibitor KN-62 injected before conditioning or test sessions each reduced the increase in freezing in STZ-induced diabetic mice. These results indicate that the functions of AMPA receptors in the amygdala and hippocampus are enhanced due to increased phosphorylation by PKA and CaMKII, which enhances fear memory in diabetic mice.
Keywords: CaMKII; Diabetes mellitus; Fear memory; GluA1 subunit of AMPA receptor; Mice; PKA.
Copyright © 2024 Elsevier B.V. All rights reserved.