Exploring the Critical Role of Tight Junction Proteins in Kidney Disease Pathogenesis

Nephron. 2024 Nov 12:1-11. doi: 10.1159/000542498. Online ahead of print.

Abstract

Background: Kidney disease poses a significant global health challenge, marked by a rapid decline in renal function due to a variety of causative factors. A crucial element in the pathophysiology of kidney disease is the dysregulation of epithelial cells, which are vital components of renal tissue architecture. The integrity and functionality of these cells are largely dependent on tight junctions (TJ) proteins, complex molecular structures that link adjacent epithelial cells. These TJ not only confer cellular polarity and maintain essential barrier functions but also regulate epithelial permeability.

Summary: TJ proteins are pivotal in their traditional role at cell junctions and in their non-junctional capacities. Recent research has shifted the perception of these proteins from mere structural elements to dynamic mediators of kidney disease, playing significant roles in various renal pathologies. This review explores the multifaceted roles of TJ proteins, focusing on their functions both within and external to the renal epithelial junctions. It highlights how these proteins contribute to mechanisms underlying kidney disease, emphasizing their impact on disease progression and outcomes.

Key messages: TJ proteins have emerged as significant players in the field of nephrology, not only for their structural role but also for their regulatory functions in disease pathology. Their dual roles in maintaining epithelial integrity and mediating pathological processes make them promising therapeutic targets for kidney disease. Understanding the intricate contributions of TJ proteins in kidney pathology offers potential for novel therapeutic strategies, aiming to modulate these proteins to halt or reverse the progression of kidney disease.

Keywords: Claudin-1; Fibrosis; Kidney disease; Tight junction.

Publication types

  • Review