In this study, we investigated the potential benefits of L-Fucose administration to pregnant mice exposed to Ochratoxin A (OTA), a widespread mycotoxin, producing ovarian damage in offspring. The results showed that administration of 3.5 μg/d OTA induced alterations in intestinal tissues and gut microbiota of pregnant mice, leading to heightened local and systemic inflammation. This inflammatory affected the ovaries of their 3 dpp offspring, in which elevated levels of LPS and ROS were found associated to significant decreased oocyte count and impaired primordial follicle assembly. Moreover, mRNA-Seq analysis showed significant changes in ovarian transcriptomes linked to various GO terms and KEGG pathways, notably ferroptosis, a recognized form of cell death observed. Interestingly, administration of 0.3 g/kg b. w. L-Fucose following OTA exposure mitigated these effects on intestinal tissues and gut microbiota in mothers and on the offspring's ovaries. Similar benefits were obtained by gut microbiota transplantation from L-Fucose-treated pregnant females into OTA-exposed mothers. These findings suggest that inflammatory impact of OTA on maternal intestine/gut can pass to the fetus causing offspring ovary defects and support the use of L-Fucose as adjuvant to counteract the adverse effects of mycotoxins on the gut microbiota, particularly reference to those affecting reproductive organs.
Keywords: Ferroptosis; Gut microbiota; L-Fucose; OTA; Primordial follicle formation.
Copyright © 2024 Elsevier B.V. All rights reserved.