Human-like dissociations between confidence and accuracy in convolutional neural networks

PLoS Comput Biol. 2024 Nov 14;20(11):e1012578. doi: 10.1371/journal.pcbi.1012578. eCollection 2024 Nov.

Abstract

Prior research has shown that manipulating stimulus energy by changing both stimulus contrast and variability results in confidence-accuracy dissociations in humans. Specifically, even when performance is matched, higher stimulus energy leads to higher confidence. The most common explanation for this effect, derived from cognitive modeling, is the positive evidence heuristic where confidence neglects evidence that disconfirms the choice. However, an alternative explanation is the signal-and-variance-increase hypothesis, according to which these dissociations arise from changes in the separation and variance of perceptual representations. Because artificial neural networks lack built-in confidence heuristics, they can serve as a test for the necessity of confidence heuristics in explaining confidence-accuracy dissociations. Therefore, we tested whether confidence-accuracy dissociations induced by stimulus energy manipulations emerge naturally in convolutional neural networks (CNNs). We found that, across three different energy manipulations, CNNs produced confidence-accuracy dissociations similar to those found in humans. This effect was present for a range of CNN architectures from shallow 4-layer networks to very deep ones, such as VGG-19 and ResNet-50 pretrained on ImageNet. Further, we traced back the reason for the confidence-accuracy dissociations in all CNNs to the same signal-and-variance increase that has been proposed for humans: higher stimulus energy increased the separation and variance of evidence distributions in the CNNs' output layer leading to higher confidence even for matched accuracy. These findings cast doubt on the necessity of the positive evidence heuristic to explain human confidence and establish CNNs as promising models for testing cognitive theories of human behavior.

MeSH terms

  • Computational Biology
  • Humans
  • Neural Networks, Computer*