Peroxisome proliferator-activated receptor-γ (PPARγ) is a nuclear hormone receptor that is a master regulator of adipocyte differentiation and function. ZBTB9 is a widely expressed but poorly studied transcription factor that was predicted to interact with PPARγ based on large-scale protein-protein interaction experiments. In addition, genome-wide association studies (GWAS) revealed associations between ZBTB9 and BMI, T2D risk, and HbA1c levels. Here we show that Zbtb9 deficiency in mature adipocytes decreased PPARγ activity and protein level, and thus acts as a positive regulator of PPARγ signaling. In contrast, Zbtb9 deficiency in 3T3-L1 and human preadipocytes increased PPARγ levels and enhanced adipogenesis. Transcriptomic and transcription factor binding site analyses of Zbtb9 deficient preadipocytes revealed that the E2F pathway, controlled by the E2F family of transcription factors that are classically associated with cell cycle regulation, was among the most upregulated pathways. E2F1 positively regulates adipogenesis by promoting Pparg expression, independent of its cell cycle role, via direct binding to the Pparg promoter early during adipogenesis. RB phosphorylation (pRB), which regulates E2F activity, was also upregulated in Zbtb9 deficient preadipocytes. Critically, an E2F1 inhibitor blocked the effects of Zbtb9 deficiency on adipogenesis. Collectively, these results demonstrate that Zbtb9 inhibits adipogenesis as a negative regulator of Pparg expression via pRB-E2F signaling. Our findings reveal cell-state dependent roles of ZBTB9 in adipocytes, identifying a new molecule that regulates adipocyte biology as both a positive and negative regulator of PPARγ signaling depending on the cellular context, and thus may be important in the pathogenesis of obesity and T2D.
Keywords: E2F transcription factor; adipocyte; adipogenesis; peroxisome proliferator-activated receptor (PPAR); transcriptional regulation; type 2 diabetes.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.