Structure confirmation, reactivity, bacterial mutagenicity and quantification of 2,2,4-tribromo-5-hydroxycyclopent-4-ene-1,3-dione in drinking water

Commun Chem. 2024 Nov 14;7(1):266. doi: 10.1038/s42004-024-01356-3.

Abstract

The presence of two new disinfectant by-product (DBP) groups in the UK was recently shown using non-target analysis, halogenated-hydroxycyclopentenediones and halogenated-methanesulfonic acids. In this work, we confirmed the structure of 2,2,4-tribromo-5-hydroxycyclopent-4-ene-1,3-dione (TBHCD), and quantified it together with dibromomethanesulfonic acid at 122 ± 34 and 326 ± 157 ng L-1 on average in London's drinking water, respectively (n = 21). We found TBHCD to be photolabile and unstable in tap water and at alkaline pH. Furthermore, spectral and computational data for TBHCD and three other halogenated-hydroxycyclopentenediones indicated they could act as a source of radicals in water and in the body. Importantly, TBHCD was calculated to have a 14.5 kcal mol-1 lower C-Br bond dissociation enthalpy than the N-Br bond of N-bromosuccinimide, a common radical substitution reagent used in organic synthesis. TBHCD was mutagenic in Salmonella/microsome assays using strains TA98, TA100 and TA102. This work reveals the unique features, activity and toxicity of trihalogenated hydroxycyclopent-4-ene-1,3-diones, prompting a need to more comprehensively assess their risks.