Low-Spin Fe3+ Evoked by Multiple Defects with Optimal Intermediate Adsorption Attaining Unparalleled Performance in Water Oxidation

Adv Mater. 2024 Nov 14:e2412598. doi: 10.1002/adma.202412598. Online ahead of print.

Abstract

Electrocatalytic water splitting is long constrained by the sluggish kinetics of anodic oxygen evolution reaction (OER), and rational spin-state manipulation holds great promise to break through this bottleneck. Low-spin Fe3+ (LS, t2g 5eg 0) species are identified as highly active sites for OER in theory, whereas it is still a formidable challenge to construct experimentally. Herein, a new strategy is demonstrated for the effective construction of LS Fe3+ in NiFe-layered double hydroxide (NiFe-LDH) by introducing multiple defects, which induce coordination unsaturation over Fe sites and thus enlarge their d orbital splitting energy. The as-obtained catalyst exhibits extraordinary OER performance with an ultra-low overpotential of 244 mV at the industrially required current density of 500 mA cm-2, which is 110 mV lower than that of the conventional NiFe-LDH with high-spin Fe3+ (HS, t2g 3eg 2) and superior to most previously reported NiFe-based catalysts. Comprehensive experimental and theoretical studies reveal that LS Fe3+ configuration effectively reduces the adsorption strength of the O* intermediate compared with that of the HS case, thereby altering the rate-determining step from (O* → OOH*) to (OH* → O*) of OER and lowering its reaction energy barrier. This work paves a new avenue for developing efficient spin-dependent electrocatalysts for OER and beyond.

Keywords: defect engineering; layered double hydroxides; low‐spin Fe3+; spin state regulation; water oxidation.