The role of the gut microbiome in enhancing the efficacy of anticancer treatments like chemotherapy and radiotherapy is well acknowledged. However, there is limited empirical evidence on its predictive capabilities for neoadjuvant immunochemotherapy (NICT) responses in esophageal squamous cell carcinoma (ESCC). Our study fills this gap by comprehensively analyzing the gut microbiome's influence on NICT outcomes. We analyzed 16S rRNA gene sequences from 136 fecal samples from 68 ESCC patients before and after NICT, along with 19 samples from healthy controls. After NICT, marked microbiome composition changes were noted, including a decrease in ESCC-associated pathogens and an increase in beneficial microbes such as Limosilactobacillus, Lacticaseibacillus, and Staphylococcus. Baseline microbiota profiles effectively differentiated responders from nonresponders, with responders showing higher levels of short-chain fatty acid (SCFA)-producing bacteria such as Faecalibacterium, Eubacterium_eligens_group, Anaerostipes, and Odoribacter, and nonresponders showing increases in Veillonella, Campylobacter, Atopobium, and Trichococcus. We then divided our patient cohort into training and test sets at a 4:1 ratio and utilized the XGBoost-RFE algorithm to identify 7 key microbial biomarkers-Faecalibacterium, Subdoligranulum, Veillonella, Hungatella, Odoribacter, Butyricicoccus, and HT002. A predictive model was developed using LightGBM, which achieved an area under the receiver operating characteristic curve (AUC) of 86.8% [95% confidence interval (CI), 73.8% to 99.4%] in the training set, 76.8% (95% CI, 41.2% to 99.7%) in the validation set, and 76.5% (95% CI, 50.4% to 100%) in the testing set. Our findings underscore the gut microbiome as a novel source of biomarkers for predicting NICT responses in ESCC, highlighting its potential to enhance personalized treatment strategies and advance the integration of microbiome profiling into clinical practice for modulating cancer treatment responses.
Copyright © 2024 Le Liu et al.