SPathDB: a comprehensive database of spatial pathway activity atlas

Nucleic Acids Res. 2025 Jan 6;53(D1):D1205-D1214. doi: 10.1093/nar/gkae1041.

Abstract

Spatial transcriptomics sequencing technology deepens our understanding of the diversity of cell behaviors, fates and states within complex tissue, which is often determined by the fine-tuning of regulatory network functional activities. Therefore, characterizing the functional activity within tissue space is helpful for revealing the functional features that drive spatial heterogeneity, and understanding complex biological processes. Here, we describe a database, SPathDB (http://bio-bigdata.hrbmu.edu.cn/SPathDB/), which aims to dissect the pathway-mediated multidimensional spatial heterogeneity in the context of functional activity. We manually curated spatial transcriptomics datasets and biological pathways from public data resources. SPathDB consists of 1689 868 spatial spots of 695 slices from 84 spatial transcriptome datasets of human and mouse, which involves 36 tissues, and also diseases such as cancer, and provides interactive analysis and visualization of the functional activities of 114 998 pathways across these spatial spots. SPathDB provides five flexible interfaces to retrieve and analyze pathways with highly variable functional activity across spatial spots, the distribution of pathway functional activities along pseudo-space axis, pathway-mediated spatial intercellular communications and the associations between spatial pathway functional activity and the occurrence of cell types. SPathDB will serve as a foundational resource for identifying functional features and elucidating underlying mechanisms of spatial heterogeneity.

MeSH terms

  • Animals
  • Databases, Genetic*
  • Gene Expression Profiling
  • Gene Regulatory Networks
  • Humans
  • Mice
  • Software
  • Transcriptome* / genetics