Harnessing Plasmonic Interference for Nanoscale Ultrafast Electron Sources

Phys Rev Lett. 2024 Nov 1;133(18):185001. doi: 10.1103/PhysRevLett.133.185001.

Abstract

In this Letter we demonstrate the use of plasmonic focusing in conjunction with nonlinear photoemission to develop geometrically flat nanoscale electron sources with less than 40 pm-rad root mean squared (rms) normalized transverse emittance. Circularly polarized light is incident on a gold Archimedean spiral structure to generate surface-plasmon polaritons that interfere coherently at the center resulting in a 50 nm rms emission area. Such a nanostructured flat surface enables simultaneous spatiotemporal confinement of emitted electrons at the nanometer and femtosecond level and can be used as an advanced electron source for high-repetition-rate ultrafast electron diffraction and microscopy experiments as well as the next generation of miniaturized particle accelerators.