Biofabricated zinc oxide nanoparticles mitigate acrylamide-induced immune toxicity and modulate immune-related genes and microRNA in rats

Naunyn Schmiedebergs Arch Pharmacol. 2024 Nov 16. doi: 10.1007/s00210-024-03566-x. Online ahead of print.

Abstract

This study evaluated the potential efficacy of eco-friendly biofabricated zinc oxide nanoparticles (GS-ZnONP) (10 mg/kg b.wt) to reduce the impacts of long-term oral acrylamide (ALD) exposure (20 mg/kg b.wt) on the blood cells, immune components, splenic oxidative status, and expression of CD20, CD3, CD4, CD8, TNF-α, caspase-3, microRNA-181a-5p, and microRNA-125-5p in rats in a 60-day experiment. The study findings revealed that GS-ZnONP significantly corrected the ALD-induced hematological alterations. Additionally, the ALD-induced increase in the serum C3, splenic ROS, CD4, CD8, and MDA and histological alterations were significantly repressed in the ALD + GS-ZnONP-treated rats. Instead, the depleted splenic antioxidants and Zn contents were markedly reestablished in the ALD + GS-ZnONP-treated group. Additionally, a significant upregulation of expression of splenic CD3, CD4, CD8, CD20, TNF-α, and caspase-3, but downregulation of microRNA-181a-5p and microRNA-125-5p was detected in the ALD-exposed group. Yet, the former deviations in the gene expressions were corrected in the ALD + GS-ZnONP-treated rats. Furthermore, GS-ZnONP treatment significantly minimized the increased caspase-3 and TNF-α immunoexpression in the splenic tissues of ALD-exposed rats. Conclusively, the study findings proved the efficacy of GS-ZnONP in rescuing ALD-induced disturbances in blood cell populations, immune function, splenic antioxidant status, and immune-related gene expression.

Keywords: Acrylamide; Anemia; CD3; Immunohistochemistry; MicroRNA-125-5p; Zinc oxide nanoparticles.